UG/4th Sem/MATH/H/19

2019

B.Sc. (Honours)

4th Semester Examination

MATHEMATICS

Paper - C10T

Full Marks: 60

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Illustrate the answers wherever necessary.

Unit - 1 (Group A)

1. Answer any three questions:

 2×3

- (a) Prove that in a ring R if a is an idempotent element then 1 a is also idempotent. 2
- (b) Define maximal ideal in a Ring. Give it's example.
- (c) Define char R when char R is called the trivial ring.

ring.

2. Answer any two questions:

divisor of zero if $a, b \in R$.

(d) If a, b be two elements of a field F and $b \neq 0$, then prove that a = 1 if $(ab)^2 = ab^2 + bab - b^2$.

(e) If R is an integral domain, then R[x] is also an integral domain. Where R[x] is a power series

(a) Define divisors of zero in a ring. Show that the

ring of matrices of the form $\begin{pmatrix} a & b \\ 2b & a \end{pmatrix}$ contains

no divisor of zero if $a, b \in Q$ but contains

5×2

(b)	Show that every field is an integral domain b	
	the converse of the theorem is not necessar	ly
	true.	5
(c)	Every ideal of the ring of integers $(Z, +, .)$ is	a
	principal ideal.	5
	Unit - 2 (Group B)	
3. Ans	swer any two questions:	<2
(a)	Prove that the rings $(Zn, +, .)$ and $(Z/(n), +,$.)
	are isomorphic.	2

- (b) Let $\{R, +, .\}$ and $\{R', +, .\}$ be two rings and $f: R \to R'$ be a homomorphism. Then prove that $f(-a) = -f(a), \forall a \in R$.
- (c) Let R = (Z, +, .); R' = (2Z, +, .) and $\phi : R \to R'$ be defined by $\phi(x) = 2x$, $x \in Z$, show that ϕ is not a homomorphism.
- 4. Answer any two questions:

5×2

- (a) State and prove 1st isomorphism theorem of Ring.
- J(b) Let I and J be two ideals of a ring R. Then I+J and $I\cap J$ are also ideals and the factor ring (I+J) and $J'(I\cap J)$ are isomorphic. 5
 - (c) Let $\{R, +, .\}$ and $\{R', +, .\}$ be two rings and $f: R \to R'$ be an isomorphism, then prove that
 - (i) if R be commutative then R' is also Commutative
 - (ii) if R contains unity then R' also containing unity.
 - (iii) if R be without divisor of zero then R' is also without divisor of zero.

[Turn Over]